CityU-DAC: Disambiguating Sentiment-Ambiguous Adjectives within Context

نویسندگان

  • Bin Lu
  • Benjamin Ka-Yin T'sou
چکیده

This paper describes our system participating in task 18 of SemEval-2010, i.e. disambiguating SentimentAmbiguous Adjectives (SAAs). To disambiguating SAAs, we compare the machine learning-based and lexiconbased methods in our submissions: 1) Maximum entropy is used to train classifiers based on the annotated Chinese data from the NTCIR opinion analysis tasks, and the clause-level and sentence-level classifiers are compared; 2) For the lexicon-based method, we first classify the adjectives into two classes: intensifiers (i.e. adjectives intensifying the intensity of context) and suppressors (i.e. adjectives decreasing the intensity of context), and then use the polarity of context to get the SAAs’ contextual polarity based on a sentiment lexicon. The results show that the performance of maximum entropy is not quite high due to little training data; on the other hand, the lexicon-based method could improve the precision by considering the polarity of context.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twitter Based System: Using Twitter for Disambiguating Sentiment Ambiguous Adjectives

In this paper, we describe our system which participated in the SemEval 2010 task of disambiguating sentiment ambiguous adjectives for Chinese. Our system uses text messages from Twitter, a popular microblogging platform, for building a dataset of emotional texts. Using the built dataset, the system classifies the meaning of adjectives into positive or negative sentiment polarity according to t...

متن کامل

Disambiguating Dynamic Sentiment Ambiguous Adjectives

Dynamic sentiment ambiguous adjectives (DSAAs) like “large, small, high, low” pose a challenging task on sentiment analysis. This paper proposes a knowledge-based method to automatically determine the semantic orientation of DSAAs within context. The task is reduced to sentiment classification of target nouns, which we refer to sentiment expectation instead of semantic orientation widely used i...

متن کامل

HITSZ_CITYU: Combine Collocation, Context Words and Neighboring Sentence Sentiment in Sentiment Adjectives Disambiguation

This paper presents the HIT_CITYU systems in Semeval-2 Task 18, namely, disambiguating sentiment ambiguous adjectives. The baseline system (HITSZ_CITYU_3) incorporates bi-gram and n-gram collocations of sentiment adjectives, and other context words as features in a one-class Support Vector Machine (SVM) classifier. To enhance the baseline system, collocation set expansion and characteristics le...

متن کامل

SemEval-2010 Task 18: Disambiguating Sentiment Ambiguous Adjectives

Sentiment ambiguous adjectives cause major difficulties for existing algorithms of sentiment analysis. We present an evaluation task designed to provide a framework for comparing different approaches in this problem. We define the task, describe the data creation, list the participating systems and discuss their results. There are 8 teams and 16 systems.

متن کامل

YSC-DSAA: An Approach to Disambiguate Sentiment Ambiguous Adjectives Based on SAAOL

In this paper, we describe the system we developed for the SemEval-2010 task of disambiguating sentiment ambiguous adjectives (hereinafter referred to SAA). Our system created a new word library named SAA-Oriented Library consisting of positive words, negative words, negative words related to SAA, positive words related to SAA, and inverse words, etc. Based on the syntactic parsing, we analyzed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010